Melodia Lucas

Position

PhD candidate, Research Engineer (Gexcon)

Affiliation

Publications
Academic lecture
Academic article
Academic chapter/article/Conference paper

See a complete overview of publications in Cristin.

Lucas, M.; Hisken, H.; Skjold, T.; Arntzen, B.J. (2022). CFD Analysis of Explosions with Hydrogen-Methane-Air Mixtures in Congested Geometries. Chemical Engineering Transactions, 20: 163-168. DOI: https://doi.org/10.3303/cet2290028

Lucas, M., Atanga, G., Hisken, H., Mauri, L. & Skjold, T. (2021). Simulating vented hydrogen deflagrations: Improved modelling in the CFD tool FLACS-Hydrogen. International Journal of Hydrogen Energy, 46: 12464-12473. DOI: https://doi.org/10.1016/j.ijhydene.2020.09.073

Lucas, M.; Hisken, H.; Skjold, T. (2020). Computational fluid dynamics simulations of hydrogen releases and vented deflagrations in large enclosures. Journal of Loss Prevention in the Process Industries, 63: 103999. DOI: https://doi.org/10.1016/j.jlp.2019.103999 

 

Projects

Improved modelling of hydrogen explosions (PhD project funded by the Research Council of Norway with projet number 317782)

Results from consequence models that have been developed to handle hydrogen applications specifically, can in principle be used to support the design process. The consequence model FLACS is based on computational fluid dynamics, and is developed by Gexcon AS. The capability of FLACS to represent the consequences of accident scenarios involving hydrogen has been developed as part of several research programs. However, several of these initiatives have also uncovered limitations in the predictive capabilities of the model. For example, the predicted reactivity for a range of concentrations of hydrogen (when mixed with air) has been found to be overly conservative in the present commercial version of FLACS. A combustion model that alleviates this problem exists in-house in Gexcon, however, this model requires further development to be sufficiently general. Furthermore, the present version of FLACS can only account for the mitigating effect by introducing additional nitrogen to the atmosphere, while it would be highly relevant to also represent the effect of water, CO2, and various types of chemical inhibitors. The primary objective of the doctoral project is therefore to develop a general framework for modelling burning velocities of gas mixtures containing hydrogen in FLACS, and to demonstrate improved accuracy of model predictions of accident scenarios relevant for hydrogen installations.