Ilker Fer

Stilling

Professor

Tilhørighet

Forskergrupper

Forskning

See my ResearcherID / Publons
 

Editor, Journal of Physical Oceanography

Editor, Ocean Science
 

Research interests: Physical oceanography, ocean mixing and water mass transformations, boundary layer processes, dense water overflows, turbulence and mixing, fine and microstructure data acquisition and interpretation, seismic reflection techniques to image oceanic finestructure, convective processes leading to dense water formation, turbulence in the under ice boundary layer, air-ice-sea interaction, internal waves, turbulence parameterizations.

Visit: NorEMSONorGliders

Undervisning

GEOF110, Innføring i dynamikken til atmosfæren og havet (10 SP)

GEOF310, Turbulens i atmosfærens og havets grenselag (10 SP)

GEOF301, Introduksjonskurs til mastergrad (5 SP)

GEOF337, Fysisk oseanografi i fjordar (10 SP)

Publikasjoner
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001

Se en full oversikt over publikasjoner i Cristin

2024

142. Foss, Ø., J. Maton, G. Moholdt, L. S. Schmidt, D. A. Sutherland, I. Fer, F. Nilsen, J. Kohler, and A. Sundfjord (2024), Ocean warming drives immediate mass loss from calving glaciers in the high Arctic, Nature Communications, 15, 10460, https://doi.org/10.1038/s41467-024-54825-7.

141. Loose, B., I. Fer, A. Ulfsbo, M. Chierici, E. S. Droste, D. Nomura, A. Fransson, M. Hoppema, and S. Torres-Valdés (2024), An analysis of air-sea gas exchange for the entire MOSAiC Arctic drift, Elementa: Science of the Anthropocene, 12https://doi.org/10.1525/elementa.2023.00128.

140. Kalhagen, K., R. Skogseth, T. M. Baumann, E. Falck, and I. Fer (2024), An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability, Ocean Sci., 20, 981-1001, https://doi.org/10.5194/os-20-981-2024

139. Kolås, E. H., T. M. Baumann, R. Skogseth, Z. Koenig, and I. Fer (2024), Circulation and hydrography in the northwestern Barents Sea: insights from recent observations and historical data (1950–2022), J. Geophys. Res., 129, e2023JC020211, https://doi.org/10.1029/2023JC020211.

138. Kolås, E. H., I. Fer, and T. M. Baumann (2024), The Polar Front in the northwestern Barents Sea: structure, variability and mixing, Ocean Sci., 20, 895-916, https://doi.org/10.5194/os-20-895-2024.

137. Mo-Bjørkelund, T., E. Kolås, I. Fer, and M. Ludvigsen (2024), Adaptive Tracking of the Barents Sea Polar Front Using an Autonomous Underwater Vehicle, Marine Technology Society Journal, 58, 23-35, https://doi.org/10.4031/MTSJ.58.3.6

136. Schulz, K., Z. Koenig, M. Muilwijk, D. Bauch, C. J. M. Hoppe, E. S. Droste, M. Hoppmann, E. J. Chamberlain, G. Laukert, T. Stanton, A. Quintanilla-Zurita, I. Fer, C. Heuzé, S. Karam, S. Mieruch-Schnülle, T. M. Baumann, M. Vredenborg, S. Tippenhauer, and M. A. Granskog (2024), The Eurasian Arctic Ocean along the MOSAiC drift in 2019–2020: An interdisciplinary perspective on physical properties and processes, Elementa: Science of the Anthropocene, 12https://doi.org/10.1525/elementa.2023.00114.

135. Darelius, E., I. Fer, M. Janout, K. Daae, and N. Steiger (2024), Observations of the Antarctic Slope Current in the Southeastern Weddell Sea: A Bottom-Enhanced Current and Its Seasonal Variability, J. Geophys. Res., 129, e2023JC020666, https://doi.org/10.1029/2023JC020666.

134. Kuznetsov, I., B. Rabe, A. Androsov, Y. C. Fang, M. Hoppmann, A. Quintanilla-Zurita, S. Harig, S. Tippenhauer, K. Schulz, V. Mohrholz, I. Fer, V. Fofonova, and M. Janout (2024), Dynamical reconstruction of the upper-ocean state in the central Arctic during the winter period of the MOSAiC expedition, Ocean Sci., 20, 759-777, https://doi.org/10.5194/os-20-759-2024.

133. Fer, I., M. Dengler, P. Holtermann, A. Le Boyer, and R. Lueck (2024), ATOMIX benchmark datasets for dissipation rate measurements using shear probes, Scientific Data, 11, 518, https://doi.org/10.1038/s41597-024-03323-y 

132. Lueck, R., I. Fer, C. E. Bluteau, M. Dengler, H. P., R. Inoue, A. LeBoyer, S.-A. Nicholson, K. Schulz, and C. Stevens (2024), Best practices recommendations for estimating dissipation rates from shear probes, Frontiers in Marine Science, 11, https://doi.org/10.3389/fmars.2024.1334327

2023

131. Le Boyer, A., N. Couto, M. H. Alford, H. F. Drake, C. E. Bluteau, K. G. Hughes, A. C. Naveira Garabato, A. J. Moulin, T. Peacock, E. C. Fine, A. Mashayek, L. Cimoli, M. P. Meredith, A. Melet, I. Fer, M. Dengler, and C. L. Stevens (2023), Turbulent diapycnal fluxes as a pilot Essential Ocean Variable, Frontiers in Marine Science, 10, https://doi.org/10.3389/fmars.2023.1241023.

130. Koenig, Z. I. Fer, M. Chierici, A. Fransson, E. Jones, E. H. Kolås (2023), Diffusive and advective cross-frontal fluxes of inorganic nutrients and dissolved inorganic carbon in the Barents Sea in autumn, Prog. Oceanogr., 103161, https://doi.org/10.1016/j.pocean.2023.103161.

129. Baumann, T. M., I. Fer, K. Schulz, and V. Mohrholz (2023), Validating Finescale Parameterizations for the eastern Arctic Ocean internal wave field, J. Geophys Res., 128, e2022JC018668, https://doi.org/10.1029/2022JC018668.

128. Baumann, T. M., and I. Fer (2023), Trapped tidal currents generate freely propagating internal waves at the Arctic continental slope, Scientific Reports, 13, https://doi.org/10.1038/s41598-023-41870-3.

127. Smith, M. M. et al. (45 co-authors incl. I. Fer) (2023) Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features, Elementa: Science of the Anthropocene, 11, https://doi.org/10.1525/elementa.2023.00025.

126. Gerland et al. (41 co-authors incl. I. Fer) (2023), Still Arctic? - The changing Barents Sea, Elementa, 11, https://doi.10.1525/elementa.2022.00088.

125. Giddy, I. S., I. Fer, S. Swart, and S.-A. Nicholson (2023), Vertical Convergence of Turbulent and Double-Diffusive Heat Flux Drives Warming and Erosion of Antarctic Winter Water in Summer, J. Phys. Oceanogr., 53, 1941-1958, https://doi.org/10.1175/JPO-D-22-0259.1.

124. Fer, I., A. K. Peterson, and F. Nilsen (2023), Atlantic Water Boundary Current Along the Southern Yermak Plateau, Arctic Ocean, J. Geophys. Res., 128, e2023JC019645, https://doi.org/10.1029/2023JC019645.

123. Darelius, E., K. Daae, V. Dundas, I. Fer, H. H. Hellmer, M. Janout, K. W. Nicholls, J.-B. Sallée, and S. Østerhus (2023), Observational evidence for on-shelf heat transport driven by dense water export in the Weddell Sea, Nature Communications, 14, 1022, https://doi.org/10.1038/s41467-023-36580-3.

122. Schulz, K., D. Kadko, V. Mohrholz, M. Stephens, and I. Fer (2023), Winter Vertical Diffusion Rates in the Arctic Ocean, Estimated From 7Be Measurements and Dissipation Rate Profiles, J. Geophys. Res., 128, e2022JC019197, https://doi.org/10.1029/2022JC019197.

2022

121. Urbancic, G. H., K. G. Lamb, I. Fer, and L. Padman, (2022). The generation of linear and nonlinear internal waves forced by sub-inertial tides over the Yermak Plateau, Arctic Ocean, J. Phys. Oceanogr., https://doi.org/10.1175/JPO-D-21-0264.1.

120. Fer, I., T. Baumann, Z. Koenig, M. Muilwijk, and S. Tippenhauer (2022), Upper-ocean turbulence structure and ocean-ice drag coefficient estimates using an ascending microstructure profiler during the MOSAiC drift, J. Geophys. Res., 127, e2022JC018751, https://doi.org/10.1029/2022JC018751.

119. Koenig, Z., K. Kalhagen, E. Kolås, I. Fer, F. Nilsen, and F. Cottier (2022), Atlantic Water Properties, Transport and Heat Loss From Mooring Observations North of Svalbard, J. Geophys. Res., 127, e2022JC018568, https://doi.org/10.1029/2022JC018568.

118. Schulz, K., V. Mohrholz, I. Fer, M. Janout, M. Hoppmann, J. Schaffer, and Z. Koenig (2022), A full year of turbulence measurements from a drift campaign in the Arctic Ocean 2019--2020, Scientific Data, 9, 472, https://doi.org/10.1038/s41597-022-01574-1.

117. Kolås, E. H., T. Mo-Bjørkelund, and I. Fer (2022), Technical note: Turbulence measurements from a light autonomous underwater vehicle, Ocean Sci., 18, 389-400, https://doi.org/10.5194/os-18-389-2022.

116. Nicholson, S.-A., D. B. Whitt, I. Fer, M. D. du Plessis, A. D. Lebéhot, S. Swart, A. J. Sutton, and P. M. S. Monteiro (2022), Storms drive outgassing of CO2 in the subpolar Southern Ocean, Nature Comm., 13, 158, https://doi.org/10.1038/s41467-021-27780-w

115. Rabe et al (90 co-authors incl. I. Fer) (2022), Overview of the MOSAiC expedition: Physical Oceanography, Elementa, 10, https://doi.org/10.1525/elementa.2021.00062.

2021

114. Lenn, Y.-D., I. Fer, M.-L. Timmermans, J. A. MacKinnon (2021). Mixing in the Arctic Ocean, In Ocean Mixing: Drivers, Mechanisms and Impacts, Eds. M. Meredith and A. C. Naveira Garabato, pp. 275-299, Elsevier, ISBN: 9780128215128, https://doi.org/10.1016/B978-0-12-821512-8.00018-9.

113. Fossum, T. O., P. Norgren, I. Fer, F. Nilsen, Z. C. Koenig, and M. Ludvigsen (2021), Adaptive Sampling of Surface Fronts in the Arctic Using an Autonomous Underwater Vehicle, IEEE J. Ocean. Eng., 1-10, https://doi.org/10.1109/JOE.2021.3070912.

112. Dugstad, J., P.E. Isachsen, and I. Fer (2021), The mesoscale eddy field in the Lofoten Basin from high-resolution Lagrangian simulations, Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021

111. Koenig, Z, E. Kolås, and I. Fer (2021). Structure and drivers of ocean mixing north of Svalbard in summer and fall 2018, Ocean Sci., 17, 365–381, https://doi.org/10.5194/os-17-365-2021.

2020

110. Smith, J. A., Cessi, P., Fer, I., Foltz, G., Fox-Kemper, B., Heywood, K., Jones, N., Klymak, J., and LaCasce, J. (2020). Data Availability Principles and Practice. J. Phys. Oceanogr., 50, 12, 3377-3378, https://doi.org/10.1175/JPO-D-20-0266.1

109. Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F., & Marnela, M. (2020). Structure and transport of Atlantic Water north of Svalbard from observations in summer and fall 2018. J. Geophys. Res. Oceans, 125, e2020JC016174. https://doi.org/10.1029/2020JC016174.

108. Baumann, T. M., I. V. Polyakov, L. Padman, S. Danielson, I. Fer, M. Janout, W. Williams, and A. V. Pnyushkov (2020), Arctic tidal current atlas, Scientific Data, 7, 275, https://doi.org/10.1038/s41597-020-00578-z

107. Fer, I., Z. Koenig, I. E. Kozlov, M. Ostrowski, T. P. Rippeth, L. Padman, A. Bosse, and E. Kolås (2020), Tidally-forced lee waves drive turbulent mixing along the Arctic Ocean margins, Geophys. Res. Lett., 47, e2020GL088083, https://doi.org/10.1029/2020GL088083 

106. Polyakov, I. V., T. P. Rippeth, I. Fer, T. M. Baumann, E. C. Carmack, V. V. Ivanov, M. Janout, L. Padman, A. V. Pnyushkov, and R. Rember (2020), Intensification of Near-Surface Currents and Shear in the Eastern Arctic Ocean, Geophys. Res. Lett., e2020GL089469, https://doi.org/10.1029/2020gl089469

105. Polyakov, I. V., T. P. Rippeth, I. Fer, M. B. Alkire, T. M. Baumann, E. C. Carmack, R. Ingvaldsen, V. V. Ivanov, M. Janout, S. Lind, L. Padman, A. V. Pnyushkov, and R. Rember (2020), Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean, J. Climate, https://doi.org/10.1175/jcli-d-19-0976.1

104. Fer, I., A. Bosse, and J. Dugstad (2020), Norwegian Atlantic Slope Current along the Lofoten Escarpment, Ocean Sci., 16, 685-701, [10.5194/os-16-685-2020]

103. Bruvik, E. M., I. Fer, K. Våge, and P. M. Haugan (2020), A revised ocean glider concept to realize Stommel's vision and supplement Argo floats, Ocean Sci., 16, 291-305, https://doi.org/10.5194/os-16-291-2020

102.Carvajalino-Fernández, M. A., N. B. Keeley, I. Fer, B. A. Law, and R. J. Bannister (2020), Effect of substrate type and pellet age on the resuspension of Atlantic salmon faecal material, Aquacult. Environ. Interact., 12, 117-129, https://doi.org/10.3354/aei00350 

101. Koenig, Z., I. Fer, E. Kolås, T. O. Fossum, P. Norgren, and M. Ludvigsen (2020), Observations of turbulence at a near-surface temperature front in the Arctic Ocean, J. Geophys. Res., 125, e2019JC015526, https://doi.org/10.1029/2019jc015526

2019

100. Dugstad, J.,I. M. Koszalka, P. E. Isachsen, K.-F. Dagestad and I. Fer (2019), Vertical structure and seasonal variability of the inflow to the Lofoten Basin inferred from high resolution Lagrangian simulations, J. Geophys. Res., https://doi.org/10.1029/2019JC015474

99. Bosse, A. and I. Fer (2019), Mean structure and seasonality of the Norwegian Atlantic Front Current along the Mohn Ridge from repeated glider transects, Geophys. Res. Lett., 46, [10.1029/2019GL084723]

98. Carr M., P Sutherland, A, Haase, K.-U. Evers, I. Fer, A. Jensen, H. Kalisch, J. Berntsen, E. Parau, ¬Ø. Thiem, P. A. Davies (2019), Laboratory Experiments on Internal Solitary Waves in Ice-Covered Waters, Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL084710

97. Bosse, A., I. Fer , J. M. Lilly, and H. Søiland (2019), Dynamical controls on the longevity of a non-linear vortex: The case of the Lofoten Basin Eddy, Scientific Reports, 9, 13448, https://doi.org/10.1038/s41598-019-49599-8

96. Graham, R. M., and 28 co-authors including I. Fer (2019), Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean, Scientific Reports, 9, 9222, https://doi.org/10.1038/s41598-019-45574-5

95. Roemmich, D. and 79 co-authors including I. Fer (2019), On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00439

94. Testor, P. and 101 co-authors including I. Fer (2019), OceanGliders: A Component of the Integrated GOOS, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00422

93. Renfrew, I. A., and 65 co-authors including I. Fer (2019), The Iceland Greenland Seas Project, B. Am. Meteorol. Soc., 100, 1795–1817, https://doi.org/10.1175/bams-d-18-0217.1

92. Dugstad, J., I. Fer, J. LaCasce, M. Sanchez de La Lama, and M. Trodahl (2019), Lateral Heat Transport in the Lofoten Basin: Near-Surface Pathways and Subsurface Exchange, J. Geophys. Res., 124, [10.1029/2018jc014774]

91. Menze, S., R. B. Ingvaldsen, P. Haugan, I. Fer, A. Sundfjord, A. Beszczynska-Moeller, and S. Falk-Petersen (2019), Atlantic Water Pathways Along the North-Western Svalbard Shelf Mapped Using Vessel-Mounted Current Profilers, J. Geophys. Res., 124, [10.1029/2018jc014299]

90. Kolås, E., and I. Fer (2019), Hydrography, transport and mixing of the West Spitsbergen Current: the Svalbard Branch in summer 2015, Ocean Sci., 14, 1603-1618, [10.5194/os-14-1603-2018]

89. Daae, K., I. Fer, and, E. Darelius (2019), Variability and Mixing of the Filchner Overflow Plume on the Continental Slope, Weddell Sea, J. Phys. Oceanogr., 49, 3-20 [10.1175/jpo-d-18-0093.1]

2018

88. Bosse, A., I. Fer, H. Søiland, and T. Rossby (2018), Atlantic Water transformation along its poleward pathway across the Nordic Seas, J. Geophys. Res., [10.1029/2018JC014147]

87. Fer, I., A. Bosse, B.Ferron, and P. Bouruet-Aubertot (2018), The dissipation of kinetic energy in the Lofoten Basin Eddy, J. Phys. Oceanogr., [10.1175/JPO-D-17-0244.1]

86. Granskog, M. A., I. Fer, A. Rinke, and H. Steen (2018). Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition. J. Geophys. Res., [10.1002/2017JC013328]

2017

85. Daae, K., E. Darelius, and I. Fer, S. Østerhus, and S. Ryan (2017). Wind stress mediated variability of the Filchner Trough overflow, Weddell Sea. J. Geophys. Res., [10.1002/2017JC013579]

84. Guthrie, J. I. Fer, and J. Morison (2017). Thermohaline Staircases in the Amundsen Basin: possible disruption by shear and mixing. J. Geophys. Res., [ 10.1002/2017JC012993]

83. Fer, I., A. K. Peterson, A. Randelhoff, and A. Meyer (2017), One-dimensional evolution of the upper water column in the Atlantic sector of the Arctic Ocean in winter, J. Geophys. Res., [ 10.1002/2016JC012431]

82. Yu, L.-S., A. Bosse, I. Fer, K. A. Orvik, E. M. Bruvik, I. Hessevik, and K. Kvalsund (2017), The Lofoten Basin Eddy: three years of evolution as observed by Seagliders, J. Geophys. Res., [ 10.1002/2017JC012982]

81. Meyer, A., I. Fer, A. Sundfjord and A. K. Peterson (2017), Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring, J. Geophys. Res., [ 10.1002/2016JC012441]

80. Bakhoday Paskyabi, I. Fer and J. Reuder (2017). Current and turbulence measurements at the FINO1 offshore wind energy site: analysis using 5-beam ADCPs. Ocean Dyn., [ 10.1007/ s10236-017-1109-5 ]

79. Daae, K., T. Hattermann, E. Darelius, and I. Fer (2017),On the effect of topography and wind on warm water inflow—An idealized study of the southern Weddell Sea continental shelf system.J. Geophys. Res., [ 10.1002/2016JC012541]

78. Peterson, A. K., I. Fer, M. G. McPhee, and A. Randelhoff (2017), Turbulent heat and momentum fluxes in the upper ocean under Arctic Sea Ice, J. Geophys. Res., [ 10.1002/2016JC012283]

77. Randelhoff, A., I. Fer, and A. Sundfjord (2017), Turbulent upper-ocean mixing affected by meltwater layers during Arctic summer, J. Phys. Oceanogr., [10.1175/jpo-d-16-0200.1]

76. Meyer, A., A. Sundfjord, I. Fer, C. Provost, N. Vilacieros-Robineau, Z. Koenig, I. H. Onarheim, L. H. Smedsrud, P. Duarte, P. A. Dodd, R. M. Graham, S. Schmidtko, and H. M. Kauko (2017), Winter to summer oceanographic observations in the Arctic Ocean north of Svalbard, J. Geophys. Res.,[ 10.1002/2016JC012391]

2016

75. Darelius, E., I. Fer, K.W. Nicholls (2016). Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Comm., . [ doi: 10.1038/NCOMMS12300. ]

74. Randelhoff, A., I. Fer, A. Sundfjord, J.-E. Tremblay and M Reigstad (2016). Vertical fluxes of nitrate in the seasonal nitracline of the Atlantic sector of the Arctic Ocean. J. Geophys Res.., [ doi: 10.1002/2016JC011779.. ]

73. Hole, L.R., I. Fer, D. Peddie (2016). Directional wave measurements using an autonomous vessel. Ocean Dyn., Hole, L. R., I. Fer, and D. Peddie (2016)., Ocean Dyn., [ doi: 10.1007/s10236-016-0969-4 ]

72. Guo, C., M. Ilicak, M. Bentsen, I. Fer (2016).Characteristics of the Nordic Seas overflows in a set of Norwegian Earth System Model experiments. Ocean Modell., [ doi:10.1016/j.ocemod.2016.06.004. ]

71. Fer, I., E. Darelius, and K. B. Daae (2016). Observations of energetic turbulence on the Weddell Sea continental slope. Geophys. Res. Lett., 43, 760–766, [ doi:10.1002/2015GL067349 ]

70. Zhou, S.-Q., Y.-Z. Lu, X.-L. Song, I. Fer (2016). New layer thickness parameterization of diffusive convection in the ocean. Dynam. Atmos. Oceans, 73: 87-97, doi: 10.1016/j.dynatmoce.2016.01.001.

69. Bakhoday Paskyabi, M., H.T. Bryhni, J. Reuder, and I., Fer (2015). Lagrangian measurement of waves and near surface turbulence from acoustic instruments. Energy Procedia, 80, 141-150 [ doi:10.1016/j.egypro.2015.11.416 ]

68. Ullgren, J, E. Darelius, and I. Fer (2016). Volume transport and mixing of the cold water overflow downstream of the Faroe Bank Channel from one year of moored measurements. Ocean Sci., 12: 451-470, [ doi: 10.5194/os-12-451-2016. ]

2015

67. Darelius, E., I. Fer, T. Rasmussen, C. Guo, and K.M.H. Larsen (2015). On the modulation of the periodicity of the Faroe Bank Channel overflow instabilities. Ocean Sci., 11: 855-871, [ doi: 10.5194/os-11-855-2015. ]

66. Guthrie, J., I. Fer, and J. Morison (2015). Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean. J. Geophys. Res., 120, 7880–7896, [ doi: 10.1002/2015JC010884. ]

65. Fer, I., M. Müller, and A. K. Peterson (2015). Tidal forcing, energetics, and mixing near the Yermak Plateau. Ocean Sci., 11(2): 287-304, [ doi: 10.5194/os-11-287-2015. ]

64. Carmack E. and 17 co-authors incl. I. Fer (2015). Towards quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Met. Soc., [ doi: 10.1175/BAMS-D-13-00177.1. ]

2014

63. Ghani M.H., L. R. Hole, I. Fer, V. H. Kourafalou, N. Wienders, H. Kang, K. Drushka, and D. Peddie (2014). The SailBuoy remotely-controlled unmanned vessel: measurements of near surface temperature, salinity and oxygen concentration in the Northern Gulf of Mexico. Method. Oceanogr., 10, 104-121, doi: 10.1016/j.mio.2014.08.001.

62. Darelius, E., K. Makinson , K. Daae , I. Fer, P.R. Holland, and K. Nicholls (2014). Hydrography and circulation in the Filchner Depression, Weddell Sea, Antarctica. J. Geophys. Res., 119, 5797–5814, doi: 10.1002/2014JC010225. [ pdf ] [ Abstract ]

61. Guo, C, M. Ilicak, I. Fer, E. Darelius, M. Bentsen, (2014). Baroclinic instability of the Faroe Bank Channel Overflow. J. Phys. Oceanogr., 44, 2698–2717, doi: 10.1175/JPO-D-14-0080.1. 

60. Peterson, A. K., and I. Fer (2014). Dissipation measurements using temperature microstructure from an underwater glider. Method. Oceanogr., 10, 44-69, doi: 10.1016/j.mio.2014.05.002.

59. Vihma, T. and 16 co-authors incl. Fer, I. (2014). Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review, Atmos. Chem. Phys., 14, 9403-9450, doi:10.5194/acp-14-9403-2014.

58. Fer, I., A. K. Peterson, and J. E. Ullgren (2014). Microstructure measurements from an underwater glider in the turbulent Faroe Bank Channel overflow. J. Atmos. Ocean. Tech., 31, 1128-1150.

57. Fer, I. (2014). Near-inertial mixing in the central Arctic Ocean, J. Phys. Oceanogr., 44, 2031–2049.

56. Waterhouse, A. F. and 18 co-authors incl. I. Fer (2014). Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate, J. Phys. Oceanogr., 44(7): 1854-1872, doi: 10.1175/JPO-D-13-0104.1. 

55. Darelius, E., K. O. Strand, S. Østerhus, T. Gammelsrød, M. Årthun, and I. Fer (2014). On the seasonal signal of the Filchner Overflow, Weddell Sea, Antarctica. J. Phys. Oceanogr., 44, 1230–1243. 

54. Ullgren, J.E., I. Fer, E. Darelius, and N. Beaird (2014). Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters. J. Geophys. Res., doi: 10.1002/2013JC009437 

53. Støylen, E. and I. Fer (2014). Tidally-induced internal motion in an Arctic fjord. Nonlinear Proc. Geophys., 21(1), 87-100, doi: 10.5194/npg-21-87-2014. 

52. Bakhoday Paskyabi, M. and I. Fer (2014). The influence of surface gravity waves on the injection of turbulence in the upper ocean. Nonlinear Proc. Geophys., 21, 713-733, doi:10.5194/npg-21-713-2014.

51. Fer, I., and Bakhoday Paskyabi, M. (2014). Autonomous ocean turbulence measurements using shear probes on a moored instrument. J. Atmos. Ocean. Tech., 31, 474-490.

50. Fer, I., and K. Drinkwater (2014). Mixing in the Barents Sea Polar Front near Hopen in spring. J. Mar. Sys., 130, 206-218. doi: 10.1016/j.jmarsys.2012.01.005 

49. Bakhoday Paskyabi, M. and I. Fer (2014). Turbulence structure in the upper ocean: a comparative study of observations and modelling. Ocean Dyn., 64, 611-631, doi: 10.1007/s10236-014-0697-6 

48. Dahlgren, T.G., M-L Schläppy, A. Shashkov, M. Andersson, Y. Rzhanov, and I. Fer (2014). Assessing impact from wind farms at subtidal, exposed marine areas. In: Marine Renewable Energy and Environmental Interactions, Humanity and the Sea, Eds. M. A. Shields and A.I. L. Payne, 39-48, doi: 10.1007/978-94-017-8002-5_4, Springer, 

 2013

47. Christensen, K. H., J. Röhrs, B. Ward, I. Fer, G. Broström, Ø. Saetra, and Ø. Breivik (2013). Surface wave measurements using a ship-mounted ultrasonic altimeter, Method. Oceanogr.doi: 10.1016/j.mio.2013.07.002

46. Bakhoday Paskyabi, M. and I. Fer (2013). Turbulence measurements in shallow water from a subsurface moored moving platform. Energy Proc., 35, 307-316, doi:10.1016/j.egypro.2013.07.183

45. Jensen, M.F., I. Fer, and E. Darelius (2013). Low-frequency variability on the continental slope of the southern Weddell Sea. J. Geophys. Res., doi:10.1002/jgrc.20309. 

44. Guthrie, J., J. Morison, and I. Fer (2013). Revisiting Internal Waves and Mixing in the Arctic Ocean. J. Geophys. Res., 118, doi:10.1002/jgrc.20294

43. Darelius, E., J. E. Ullgren, and I. Fer (2013). Observations of barotropic oscillations and their influence on mixing in the Faroe Bank Channel Overflow region. J. Phys. Ocean., 43, 1525-1532, doi:10.1175/JPO-D-13-059.1

42. Holbrook, W. S., I. Fer, R. W. Schmitt, D. Lizarralde, J. M. Klymak, L. C. Helfrich, and R. Kubichek (2013). Estimating oceanic turbulence dissipation from seismic images, J. Atm. Ocean. Tech., 30, 1767-1788, doi:10.1175/JTECH-D-12-00140.1

2012

41. Beaird, N., I. Fer , P. Rhines, and C. Eriksen (2012). Dissipation of turbulent kinetic energy inferred from Seagliders: an application to the eastern Nordic Seas overflows, J. Phys. Oceanogr., 42, 2268-2282. doi: 10.1175/JPO-D-12-094.1

40. Bakhoday Paskyabi, M., and I. Fer (2012). Upper ocean response to large wind farm effect in the presence of surface gravity waves. Energy Proc., 24, 245-254.

39. Sirevaag, A., and I. Fer (2012). Vertical heat transfer in the Arctic Ocean: the role of double-diffusive mixing. J. Geophys. Res., 117, C07010, doi: 10.1029/2012JC007910 

38. Fer, I., K. Makinson, and K. Nicholls (2012). Observations of thermohaline convection adjacent to Brunt Ice Shelf. J. Phys. Oceanogr., 42(3), 502-508. doi: 10.1175/JPO-D-11-0211.1

37. Jenkins, A. D., M. Bakhoday Paskyabi, I. Fer, A. Gupta, and M. Adakudlu (2012). Modelling the effect of ocean waves on the atmospheric and ocean boundary layers. Energy Proc., 24, 166-175.

36. Bakhoday Paskyabi, M., I. Fer, and A.D. Jenkins (2012). Surface gravity wave effects on the upper ocean boundary layer: modification of a one-dimensional vertical mixing model. Cont. Shelf Res., 38, 63-78. doi: 10.1016/j.csr.2012.03.002 

35. Seim, K. S., I. Fer, and H. Avlesen (2012). Stratified flow over complex topography: A model study of the bottom drag and associated mixing. Cont. Shelf Res., 34, 41-52. doi:10.1016/j.csr.2011.11.016.[pdf]

2011

34. Eakin, D., W. S. Holbrook, and I. Fer (2011). Seismic reflection imaging of large-amplitude lee waves in the Caribbean Sea. Geophys. Res. Lett., 38, L21601, doi:10.1029/2011GL049157 .

33. Darelius, E., I. Fer, and D. Quadfasel (2011). Faroe Bank Channel Overflow: Mesoscale Variability. J. Phys. Oceanogr., 44(11), 2137-2154. doi: 10.1175/JPO-D-11-035.1.

32. Seim, K. S., and I. Fer (2011). Mixing in the stratified interface of the Faroe Bank Channel overflow: the role of transverse circulation and internal waves. J. Geophys. Res.doi: 10.1029/2010JC006805 .

31. Sirevaag, A., S. de la Rosa, I. Fer, M. Nicolaus, M. Tjernström, and M. McPhee (2011). Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer. Ocean Sci. , 7, 335-349. [ Open Access Link ].

2010

30. Fer, I., P. Nandi, W. S. Holbrook, R. W. Schmitt, and P. Páramo (2010). Seismic imaging of a thermohaline staircase in the Western Tropical North Atlantic. Ocean Sci.,6, 621-631. [ Open Access Link ].

29. Chavanne, C. P., K. J. Heywood, K. W. Nicholls, and I. Fer (2010). Observations of the Antarctic Slope Undercurrent in the Southeastern Weddell Sea. Geophys. Res. Lett., 37, L13601, doi:10.1029/2010GL043603 .

28. Seim, K. S., Fer, I., and J. Berntsen (2010). Regional simulations of the Faroe Bank Channel overflow using a sigma-coordinate ocean model. Ocean Modell., 35, 31-44, doi:10.1016/j.ocemod.2010.06.002 .

27. Fer, I., G. Voet, K. S. Seim, B. Rudels, and K. Latarius (2010). Intense mixing of the Faroe Bank Channel overflow. Geophys. Res. Lett., 37, L02604, doi:10.1029/2009GL041924 .

26. Geyer, F., I. Fer, L. H. Smedsrud (2010). Structure and forcing of the overflow at the Storfjorden sill and its connection to the Arctic coastal polynya in Storfjorden. Ocean Sci., 6(1), 401-411. [ Open Access Link ].

25. Fer, I., R. Skogseth, and F. Geyer (2010). Internal waves and mixing in the Marginal Ice Zone near the Yermak Plateau. J. Phys. Oceanogr., 40(7), 1613-1630. doi: 10.1175/2010JPO4371.1 .

2009-2006

24. Holbrook, W.S., I. Fer, and R. W. Schmitt (2009). Images of internal tides near the Norwegian continental slope. Geophys. Res. Lett., 36, L00D10, doi:10.1029/2009GL038909 .

23. Sirevaag, A., and I. Fer (2009). Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard. J. Phys. Oceanogr., 39, 3049-3069. doi: 10.1175/2009JPO4172.1 

22. Fer, I. (2009). Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Ocean. Sci. Lett., 2(3), 148-152. [Open Access Link]

21. Geyer, F., I. Fer, and T. Eldevik (2009). Dense overflow from an Arctic fjord: Mean seasonal cycle, variability and wind influence. Cont. Shelf Res., 29(17), 2110-2121. doi:10.1016/j.csr.2009.08.003 

20. Daae, K.L., I. Fer, and E.P. Abrahamsen (2009). Mixing on the continental slope of the southern Weddell Sea. J. Geophys. Res., 114, C09018, doi:10.1029/2008JC005259

19. Fer, I., and B. Ådlandsvik (2008). Descent and mixing of the overflow plume from Storfjord in Svalbard: An idealized numerical model study. Ocean Science, 4, 115-132. [Open Access Link]

18. Fer, I., and W.S. Holbrook (2008). Seismic reflection methods for study of the water column. In Encylopedia of Ocean Sciences 2nd edn., Eds. J.H. Steele, K.K. Turekian, S.A. Thorpe. Oxford, Academic Press. doi:10.1016/B978-012374473-9.00799-2 . [pdf].

17. Skogseth, R., L.H. Smedsrud, F. Nilsen, and I. Fer (2008). Observations of hydrography and downflow of brine-enriched shelf water in the Storfjorden polynya, Svalbard. J. Geophys. Res., 113, C08049, doi:10.1029/2007JC004452 .

16. Fer, I., and K. Widell (2007). Early spring turbulent mixing in an ice-covered Arctic fjord during transition to melting. Cont. Shelf Res., 27, 1980-1999, doi:10.1016/j.csr.2007.04.003 

15. Sundfjord, A., I. Fer, Y. Kasajima, H. Svendsen (2007). Observations of turbulent mixing and hydrography in the Marginal Ice Zone of the Barents Sea. J. Geophys. Res., 112, C05008, doi:10.1029/2006JC003524 

14. Fer, I., and A. Sundfjord (2007). Observations of upper ocean boundary layer dynamics in the marginal ice zone, J. Geophys. Res.,112, C04012, doi:10.1029/2005JC003428 

13. Widell, K., I. Fer, and P.M. Haugan (2006). Salt release from warming sea ice. Geophys.Res. Lett., 33, L12501, doi:10.1029/ 2006GL026262.

12. Fer, I.(2006). Scaling turbulent dissipation in an Arctic fjord. Deep-Sea Res. II. 53, 77-95, doi:10.1016/j.dsr2.2006.01.003

 2005-2000

11. Holbrook, W.S. and I. Fer (2005). Ocean internal wave spectra inferred from seismic reflection transects. Geophys. Res. Lett., L15604, doi:10.1029/2005GL023733

10. Skogseth, R., I. Fer, and P.M. Haugan (2005). Dense-water production and overflow from an Arctic coastal polynya in Storfjorden. In The Nordic Seas: An Integrated Perspective, edited by H. Drange, et al., pp. 73-88, AGU Geophysical Monograph, 158. [ pdf].

9. Fer, I., M.G. McPhee, and A. Sirevaag (2004). Conditional statistics of the Reynolds stress in the under-ice boundary layer. Geophys. Res. Lett., 31, L15311, doi:10.1029/2004GL020475

8. Fer, I., R. Skogseth, and P.M. Haugan (2004). Mixing of the Storfjorden overflow (Svalbard Archipelago) inferred from density overturns. J. Geophys. Res., 109, C01005, doi:10.1029/2003JC001968 

7. Fer, I., R. Skogseth, P.M. Haugan, and P. Jaccard (2003). Observations of the Storfjorden overflow. Deep-Sea Res. Part I, 50(10-11), 1283-1303. doi:10.1016/S0967-0637(03)00124-9

6. Fer, I., and P.M. Haugan (2003). Dissolution from a liquid-CO2 lake disposed in the deep ocean. Limnol. Oceanogr., 48(2), 872-883. doi:10.4319/lo.2003.48.2.0872

5. Fer, I., U. Lemmin, and S.A. Thorpe (2002). Winter cascading of cold water in Lake Geneva. J. Geophys. Res. 107(C6), 3060, doi:10.1029/2001JC000828.

4. Fer, I., U. Lemmin, and S.A. Thorpe (2002). Contribution of entrainment and vertical plumes to the winter cascading of cold shelf waters in a deep lake. Limnol. Oceanogr. 47(2), 576-580. doi:10.4319/lo.2002.47.2.0576

3. Fer, I., U. Lemmin, and S.A. Thorpe (2002). Observations of mixing near the sides of a deep lake in winter. Limnol. Oceanogr., 47(2), 535-544. doi:10.4319/lo.2002.47.2.0535.

2. Fer, I., U. Lemmin, and S.A. Thorpe (2001). Cascading of water down the sloping sides of a deep lake in winter. Geophys. Res. Lett., 28(10), 2093-2096. doi:10.1029/2000GL012599.

1. Thorpe, S. A., U. Lemmin, C. Perrinjaquet, and I. Fer (1999). Observations of the thermal structure of a lake using a submarine. Limnol. Oceanogr., 44(6), 1575-1582. doi:10.4319/lo.1999.44.6.1575.

 

Prosjekter

The Norwegian node for the European Multidisciplinary Seafloor and water column Observatory ERIC (NorEMSO project websiteoverview

Arctic Ocean mixing processes and vertical fluxes of energy and matter (AROMA)

Gjennomført (utvalgt, men linker til prosjektbanken.no)

Watermass transformation processes and vortex dynamics in the Lofoten Basin of the Norwegian Sea (ProVoLo)

On Thin Ice (NICE) Role of Ocean Heat Flux in Sea Ice Melt

Faroe Bank Channel Overflow: Dynamics and Mixing

Antarctic Ice Shelves and Ocean Climate: Production, Export, Dynamics and Variability of Bottom Water in the Southern Weddell Sea

Arctic Ocean Mixing

Internal hydraulic processes in an Arctic fjord