Martha Enger, PhD; Dr Philos
Stilling
Professor, Visedekan for forskerutdanning
Forskergrupper
- Translasjonell kreft og vaskulær forskning
- Translasjonell kreftforskning
- Webpage: Brain Tumour Immunology & Therapy
Forskning
My research group, Brain Tumour Immunology and Therapy Group is an integral node of the larger, Kristian Gerhard Jebsen Brain Rumour Research Centre, focussed on biomedical research to study malignant brain tumours. My particular focus is to elucidate the role of natural killer cells in brain tumour and human cytomegalovirus immunesurveillance. During the last decade we have elucidated the function and clinical impact of the glial progenitor proteoglycan NG2/CSPG4 in glioblastoma (GBM) progression and response to therapy. We are developing novel therapeutic strategies combining NK cells with mAbs against NG2/CSPG4 and other salient targets that mediate treatment resistance and poor survival in GBM patients. We use multidisciplinary approaches such as annotated population and brain tumour biobanks, as well as physiologically relevant biopsy-based animal models. Diverse analytic tools include but not limited to proteomics, functional magnetic resonance imaging (employing physical properties of tissues to describe biological processes), flow cytometry, and standard molecular and cell biology methods. The long term vision of the group is to develop an immunotherapy trial for GBM patients based on NK cells applied in combination therapies, additional to the standard treatment.
Formidling
Patients that are diagnosed with the most malignant brain tumour, glioblastoma (GBM), and that are strong enough to tolerate the aggressive standard treatment of surgery, concomitant radiotherapy and chemotherapy will survive on average only 14.6 months. Moreover, less than 10% are alive after 5 years. New effective treatments are urgently needed for this deadly disease. Our research is focussed on developing a novel immunotherapy involving infusion into the tumour of natural killer (NK) cell subsets that validated for cytotoxic potency . NK cells are white blood cells that are specialised to distinguish tumour or virus infected cells from healthy cells. Interactions (or lack thereof) of NK cells´ killer receptors with stress-induced ligands expressed by the unhealthy cells, transmit death signals that kill the target cells. Greater than 40% of GBM patients express cytomegalovirus (CMV) gene products in their tumour, yet NK cells in the microenvironment that are evolved to eliminate virus infected tumours, remain non-responsive. We investigate whether there is a particular receptor-ligand combination associated with CMV infected GBMs that may render NK cells poorly responsive and allow the tumour to propagate. We are also studying T cell responses generated in parallel to CMV infection,to understand how they contribute to immune contexture of GBMs. The goal is to characterise the tumour infiltrating NK and T cells within GBM biopsies to identify mechanisms of GBM tolerance and immunological escape. We will also investigate NK cell biomarkers that enable selection of patients/donors with the most effective cells against GBM in preclinical models. The focus will be to functionally validate the receptor-ligand interactions that may determine potent killing of GBM. Once the potent NK and GBM cell receptor-ligand interactions are determined, NK cells will be combined with humanised antibodies against tumour antigens such as NG2/CSPG4,EGFR, or combined with proteasome inhibitors to potentiate tumour killing. Good Manufacturing Practice (GMP) expansion methods will be employed to obtain high yield of highly potent cells in preparation for clinical translation.
Undervisning
Anatomy
Publikasjoner
Se linken for alle publikasjoner i PubMed