Undergraduate course

Course description

Objectives and Content

The objective of the course is to obtain an integrated view of global climatic patterns throughout geologic time and to gain an understanding of the forcing mechanisms associated with these changes. This course examines the operation of the global climate system during the Cenozoic, comparing records of past and present climate change considering how Earth's climate history can inform and constrain potential future climate changes. Case studies of past climatic variability on tectonic to interannual timescales are investigated. The course incorporates journal articles and web resources to teach students through lectures, seminar discussions, and in-class activities.

Learning Outcomes

On completion of the course the student should have the following learning outcomes defined in terms of knowledge, skills and general competence:

The student can

  • explain how and why Earth¿s climate has changed during the Cenozoic (e.g. on tectonic, orbital, down to societally relevant timescales)
  • explain the methods used to determine paleoclimate, illustrate their usage and describe their limitations

The student can

  • perform quantitative analyses and apply simple box models (e.g. interpret isotope data quantitatively, use a box model to explore climate-carbon interactions )
  • summarize observations/data/principles graphically
  • recognize and discuss the factors that determine global and regional climate, including carbon cycling, plate tectonics, solar radiation, and ocean-atmospheric circulation
  • analyze paleoclimate data and draw logical inferences about past climate change

General competence
The student can

  • reflect on, evaluate and communicate the Earths climate history and the role of humans in the climate system
  • demonstrate the ability to function individually, in cooperation and ethically with others
  • present, discuss, and critically evaluate primary literature

Semester of Instruction

Required Previous Knowledge
Recommended Previous Knowledge
Access to the Course
Access to the course requires admission to a programme of study at The Faculty of Mathematics and Natural Sciences.
Teaching and learning methods

The course includes lectures, seminars and class exercises.

Lecture, 2 hours per week for 11 weeks

Exercises and/or seminars 2 hours per week for 11 weeks

Compulsory Assignments and Attendance
Laboratory exercises and seminars. Approved mandatory activities are valid for 2 semesters after course completion.
Forms of Assessment
Compulsory practicals (40 %) and 4h written exam (60 %). Both parts need to be graded as ¿passed¿ to get final assessment in the course. Digital examination: please visit
Grading Scale
The grading scale used is A to F. Grade A is the highest passing grade in the grading scale, grade F is a fail.
Assessment Semester
Written exams are organized each semester. In semesters without teaching, the written exam is arranged early in the semester. Notice: by retaking the written exam, the grade from the exercises will stay unchanged.
Reading List
The reading list will be available within July 1st for the autumn semester and Deecember 1st for the spring semester.
Course Evaluation
The course will be evaluated by the students in accordance with the quality assurance system at UiB and the department.
Examination Support Material
A calculator that conforms to the faculty regulations.
Programme Committee
The Programme Committee is responsible for the content, structure and quality of the study programme and courses.
Course Coordinator
The course coordinator and administrative contact person can be found on Mitt UiB, or you may contact
Course Administrator
The Faculty for Mathematics and Natural Sciences, Department of Earth Science has the administrative responsibility for the course and program