Martin Fernø
Stilling
Professor
Tilhørighet
Forskergrupper
Forskning
My main research interest is energy-related multiphase flows in porous media.
My current focus areas are
- CCUS (carbon capture utilization and storage)
- Hydrogen storage in porous media
My work is mainly experimental and specializing on characterization and visualization of porous media flow in complex geological settings.
- Lab-on-a-chip technology
- Medical visualization (PET, MR, CT)
- High-pressure/temperature coreflooding
- Large-scale flow visualization
Undervisning
TEACHING ACTIVITIES
Continued Learning Course: CCUS / University of Bergen / Norway
Continued Learning Course: UN SDG 7 / University of Bergen / Norway
Energy Transition / University of Bergen / Norway
Energy Physics and Technology / University of Bergen / Norway
Geological storage of carbon dioxide / University of Bergen / Norway
Experimental Reservoir Physics / University of Bergen / Norway
Fundamentals of Reservoir Physics / University of Bergen / Norway
Introduction to Petroleum and Process Technology / University of Bergen / Norway
SUPERVISION OF GRADUATE STUDENTS AND RESEARCH FELLOWS
2 post docs (1 female)
14 PhDs (5 female)
70 Master's (25 female)
Publikasjoner
2024
- Liu, Na; Fernø, Martin (2024). MICROFLUIDIC STUDY OF CYCLIC INJECTION AND MICROBIAL ACTIVITY ON H2 RECOVERY AND LOSS MECHANISMS DURING UNDERGROUND H2 STORAGE. (ekstern lenke)
- Moldekleiv, Magnus; Fernø, Martin; Tveit, Svenn (2024). The Open Porous Media Flow reservoir simulator for Undeground Hydrogen Storage: Validation and Scenario Analysis. (ekstern lenke)
- Nordbotten, Jan Martin; Fernø, Martin; Flemisch, Bernd et al. (2024). FluidFlower: A Meter-Scale Experimental Laboratory for Geological CO<inf>2</inf> Storage. (ekstern lenke)
- Liu, Na; Lysyy, Maksim; Fernø, Martin (2024). Impact of gas type on microfluidic drainage experiments relevant for underground hydrogen storage. (ekstern lenke)
- Liu, Na; Fernø, Martin; Dopffel, Nicole (2024). Bioclogging during underground hydrogen storage: Assessing impact of biofilm formation on hydrogen injection and recovery.. (ekstern lenke)
- Nordbotten, Jan Martin; Fernø, Martin; Flemisch, Bernd et al. (2024). The 11th Society of Petroleum Engineers Comparative Solution Project: Problem Definition. (ekstern lenke)
- Kovscek, A.R.; Nordbotten, Jan Martin; Fernø, Martin (2024). Scaling Up FluidFlower Results for Carbon Dioxide Storage in Geological Media. (ekstern lenke)
- Haugen, Malin; Saló-Salgado, Lluís; Eikehaug, Kristoffer et al. (2024). Physical Variability in Meter-Scale Laboratory CO<inf>2</inf> Injections in Faulted Geometries. (ekstern lenke)
- Lysyy, Maksim; Liu, Na; Landa-Marbán, David et al. (2024). Impact of gas type on microfluidic drainage experiments and pore network modeling relevant for underground hydrogen storage. (ekstern lenke)
- Eikehaug, Kristoffer; Haugen, Malin Quande; Folkvord, Olav Parelius et al. (2024). Engineering Meter-scale Porous Media Flow Experiments for Quantitative Studies of Geological Carbon Sequestration. (ekstern lenke)
Prosjekter
Subsurface Carbonate CO2 Storage and Security (2018-2021)
Globale energistrategier må gjenspeile dagens klimautfordringer, og CO2-lagring er en storskala industriell løsning for å redusere utslipp av antropogen CO2 fra fossile kilder. Gjennom fangstteknologi kan CO2 injiseres i porøse, sedimentære, geologiske lag i undergrunnen der den lagres. Lagringseffektivitet og sikkerhet er påvirket av den strukturelle integriteten til lagringsformasjonen og fortregningsmekanismer av injisert CO2.
Prosjektet fokuserer på det siste trinnet i CCS (karbonfangst og lagring) - injeksjon og lagring av CO2 i undergrunnen - med vekt på karbonater. Karbonatbergarter er ekstremt reaktive, og sammen med deres svært heterogene porestruktur, representerer de komplisert reaktivt transportproblem for CO2 lagring. Prosjektet vil utvide eksisterende kunnskap om CO2 lagring i karbonatreservoarer for å overbevise samfunnet om at CCS er viktig i overgangen til et fossilfritt energimarked. Prosjektet har to arbeidspakker innen på væskeflyt og fangstmekanismer av CO2 som benytter nye, sofistikerte eksperimentelle verktøy utviklet av forskergruppen: 1) mikromodeller med representativ geokjemi og 2) avbildning av væskeflyt med positronemisjonstomografi (PET).
Resultater fra forskningen vil også være svært relevant for grunnvannstrøm, deponering av radioaktivt avfall, oljeutvinning og forurensning i jord. Projektet er ledet av Universitetet i Bergen, Institutt for fysikk og teknologi med en stipendiat, en forsker og seks masterstudenter. Internasjonalt samarbeid med Stanford University (USA) og Montanuniversität Leoben (Østerrike).
Nanoparticles to Stabilize CO2-foam for Efficient CCUS in Challenging Reservoirs (2017-2020)
Prosjektet vil etablere attraktive industrielle løsninger som reduserer karbonfotavtrykket gjennom kombinert lagring av klimagassen CO2 og økt oljeproduksjon i modne felt ved bruk av nanoteknologi for å stabilisere CO2-skum. Globale energi strategier må reflektere dagens klimautfordringer, og lagring av CO2 er en storskala løsning for å redusere utslipp av menneskeskapt CO2 fra fossilt brensel. Fangst av CO2 er dyrt og energikrevende, og industrien trenger økonomiske insentiver til å iverksette storskala CO2 fangst og lagring. CO2 skum kan realisere disse verdiene og samtidig gi en positiv synergi mellom behovet for mer energi kombinert med muligheten for reduksjon av CO2 utslipp og karbon lagring ved permanent, sikker og billig lagring av CO2 i modne oljefelt. Et internasjonalt samarbeid med anerkjente forskere fra University of Calgary, Canada og Stanford University, USA vil bruke nanoteknologi for å forbedre CO2 skum. Nanoteknologi har potensiale til å forbedre flere av dagens EOR teknologier i reservoarmiljøer med høy temperatur og salinitet
CO2 Storage from Lab to On-Shore Field Pilots: Using CO2-Foam for Mobility Control in CCUS (2016-2019)
An international collaboration, including 6 universities and 7 oil and service companies in Europe and USA, combines expertise and the common goal to develop and test CO2 foam systems with mobility control at laboratory and field scale to optimize CO2 storage in the form of CO2 integrated EOR and CO2 aquifer sequestration. CO2 foam systems for mobility control will be developed and tested in three inexpensive confirmed on-shore US field pilots, in both clastic and carbonate reservoirs. Assisted by field experience from the US pilots CO2 Foam EOR for field implementation on NCS will be developed. Important for use on NCS is screening of surfactants to find the most environmental friendly chemicals, to include various types of reservoir rocks to reflect NCS conditions and to include various types of fractures and heterogeneities that are most important for NCS applications.
Wettability changes during polymer injection in unconsolidated sands (2017-2020)
Polymer injection for reduction of water permeability is widely used in the industry to reduce water cut in production wells. It may also be used during EOR operations to improve the mobility ratio between the injected aqueous phase and the crude oil. The polymer reduces the flow of water more effectively than reducing the flow of oil and several mechanisms for this behavior have been proposed including shrinking/swelling, preferred pathways, wall effects and wettability effects. This project proposal will focus on the latter two effects, with emphasis on the effect of wettability. In particular, one key question to answer is if polymer treatment of the reservoir will change the wetting properties of the reservoir.
Wetting in porous media, a multi-method approach to measurement, imaging and modelling (2015-2020)
In order to perform coordinated investigations on molecular, microscopic and macroscopic scales related to wettability properties, we have established an interdisciplinary group of researchers with complementary competence and equipment from The Department of Physics and Technology (IFT) and The Department of Chemistry (KI). The group is also in close cooperation with Statoil’s laboratories at Sandsli. The overall objective of this project proposal is to couple wetting properties on the molecular scale with the flow response on core-scale using a multi-scale approach: 1) Nuclear Magnetic Resonance (NMR) measurements for fundamental wettability characterization on the fluid-solid interface. 2) Magnetic Resonance Imaging (MRI) characterization and flow imaging on the pore scale and core scale. 3) Modeling combined with field pilot on the reservoir scale in parallel activities.