Oliver Müller

Position

Associate Professor, Arctic marine microbial ecology

Affiliation

Research groups

Outreach

Blogg post/article:

https://blogg.forskning.no/arktis-arven-etter-nansen-havforskning/a-jobbe-med-det-usynlige---eller-hvorfor-fotografen-ikke-tar-bilder-av-arbeidet-vart/1370083

https://www.studvest.no/forskning-pa-verdens-ende/

Teaching

Teaching in the following subjects:

  • Marine Microbial Ecology (BIO217)
  • General Microbiology (BIO101)
  • Selected Topics in Microbiology (BIO315)
Publications
Academic lecture
Popular scientific article
Academic article
Poster
Academic literature review
Report
Website (informational material)
Doctoral dissertation
Reader opinion piece
Lecture

See a complete overview of publications in Cristin.

Articles in peer-reviewed journals:

  • Müller O, Wilson B, Paulsen ML, Rumińska A, Armo HR, Bratbak G, Øvreås L (2018). Spatiotemporal dynamics of ammonia-oxidizing Thaumarchaeota in distinct Arctic water masses. Front. Microbiol. 9:24. doi: 10.3389/fmicb.2018.00024
  •  Müller O, Bang-Andreasen T, White III RA, Elberling B, Taş N, Kneafsey T, Jansson JK, Øvreås L (2018). Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environ. Microbiol. doi:10.1111/1462-2920.14348.
  • Müller O, Seuthe L, Bratbak G, Paulsen ML (2018) Bacterial response to permafrost derived organic matter input in an Arctic fjord. Front. Mar. Sci. 5. doi:10.3389/fmars.2018.00263.
  • Paulsen ML, Müller O, Larsen A, Møller EF, Sejr MK, Middelboe M, and Stedmon CA (2018). Biological transformation of Arctic dissolved organic matter in a NE Greenland fjord. Limnol. Oceanogr.10.1002/lno.11091
  • Wilson B, Müller O, Nordmann EL, Seuthe L, Bratbak G and Øvreås L (2017). Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front. Mar. Sci. 4:95. doi: 10.3389/fmars.2017.00095
  • Paulsen ML, Nielsen SEB, Müller O, Møller EF, Stedmon CA, Juul-Pedersen T, Markager S, Sejr MK, Delgado Huertas A, Larsen A, Middelboe M. (2017) Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland. Front. Mar. Sci. 4: 176. doi:10.3389/fmars.2017.00176.
  • Paulsen M L, Doré H, Garczarek L, Seuthe L, Müller O, Sandaa RA, Bratbak G, and Larsen A (2016). Synechococcus in the Atlantic Gateway to the Arctic Ocean. Front. Mar. Sci. 3: 191. doi: 10.3389/fmars.2016.00191
  • Harig L, Beinecke F, Oltmanns J, Muth J, Müller O, Rüping B, Twyman R, Fischer R, Prüfer D and Noll G (2012). Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. The Plant Journal, Volume 72, Issue 6, pages 908–921, December 2012, doi: 10.1111/j.1365-313X.2012.05125.x. 

PhD thesis:

  • Müller O (2018) Implications of a changing Arctic on microbial communities: Following the effects of thawing permafrost from land to sea (http://bora.uib.no/handle/1956/18525)

 

 

Projects

Arven etter Nansen - The Nansen Legacy (https://arvenetternansen.com)

RF3 - The living Barents Sea

The knowledge of the structure and function of the ecosystem of the northern Barents Sea and adjacent slope to the central basin is strikingly unequal compared to the regular surveyed southern Barents Sea. Yet, the most radical changes in the physical environment are observed in the northern parts of the Barents Sea, where sea ice retreat and increasing water temperatures are reshaping the ecosystem.

Hypothesis: The ecosystems of the northern (Arctic-influenced) Barents Sea and adjacent slope and basin areas function fundamentally differently from the much better understood southern (Atlantic-influenced) region.

The work package The living Barents Sea investigates how organisms in the northern Barents Sea and adjacent slope respond to current and changing environmental conditions on the species and community levels by identifying characteristic communities, by delineating the relevant environmental forcing factors that structure these communities across seasons and habitats. Estimating the production and rate-limiting factors of these organisms, as well as entangling their detailed trophic linkages, is yet another focus of this work package. More concretely, the work package addresses the following tasks:

  • Characterize biological communities in sympagic, pelagic and benthic realms in the seasonal ice zone of the northern Barents Sea and adjacent slope of the Arctic Basin in terms of biodiversity, abundance, biomass and distribution patterns in relation to environmental forcing, in particular sea ice
  • Investigate the timing of critical biological processes including primary and secondary production, phenology of life cycles, and related processes and test how changing conditions may affect these seasonal patterns across several trophic levels
  • Characterize the total annual production from microbes to fish along latitudinal and environmental gradients, identify production hot spots and how condition-specific variability in life history traits affect these
  • Characterize lower trophic level food web structure and links to consumers including top predators, carbon cycling, and biological interactions, and investigate selected regulating factors

 

Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic
(HAVOC - https://www.npolar.no/en/projects/havoc/)

HAVOC will study the role sea ice ridges play in the thinner ice pack in the Arctic Ocean. While the ice is getting thinner, the thicker parts of the ice cover are most likely to survive summer melt and provide the last habitat for ice-associated flora and fauna. The project will take part in the MOSAiC expedition.