Iain Johnston

Position

Professor, Department of Mathematics and Associate Group Leader, Computational Biology Unit

Affiliation

Research

Iain's research group is interested in combining mathematical, statistical, and experimental approaches to learn about the biological world, and how we can interact with it to improve human lives. We often work on questions where "blue skies" biological knowledge can be translated into strategies to address disease and crop production. We're particularly interested in the bioenergetic organelles (mitochondria and chloroplasts) that provide the energy that powers complex life.

One major current focus of the group is EvoConBiO -- an ERC-funded project exploring the evolution and cellular control of mitochondria and chloroplasts, using approaches from stochastic modelling, bioinformatics, and molecular biology.

You can read more at the research group website, and find non-technical summaries of research papers here.

Some keywords related to our research -- mathematical: stochastic modelling, discrete population processes, inference and model selection, uncertainty quantification, pathway inference; biological: stochastic biology, cell heterogeneity, mitochondria, chloroplasts, mtDNA, cpDNA, evolution, disease progression, bioinformatics, plant systems biology. 

Publications
Academic article
Academic literature review
Poster
Letter to the editor

See a complete overview of publications in Cristin.

Iain's publications can be found on Google Scholar here or ORCID here .

The CRIStin profile below is currently being updated.

Projects

EvoConBiO (ERC StG) -- evolution and control of bioenergetic organelles

CAMRIA (Trond Mohn) -- combatting antimicrobial resistance with interdisciplinary approaches

QUINTUS (UK NERC) -- responses of forest ecosystems to elevated CO2

HyperTraPS (Alan Turing Institute) -- inferring pathways of evolution and disease progression

Iain also supervises researchers on projects funded by the UK BBSRC and Wellcome Trust, working on plant mitochondria, seed germination, and antimicrobial resistance.