Kort info
Jeg er en matematiker med spesialisering innen fagfeltet sannsynlighetsteori.
Forskning
Min forskning fokuserer på problemstillinger innen sannsynlighetsteori og matematisk statistisk mekanikk. Noen nøkkelord som beskriver min pågående forskning er virrevandringer i (dynamiske) tilfeldige omgivelser, interagerende stokastiske prosesser, stokastiske prosesser med uendelig hukommelse og Gibbs mål.
Jeg er del av forskningsgruppen innen Statistikk og Data Science ved Matematisk institutt.
Undervisning
Publikasjoner
Vitenskapelig artikkel
- Bethuelsen, Stein Andreas; Völlering, Florian (2024). Random walks on random walks: non-perturbative results in high dimensions. (ekstern lenke)
- Bethuelsen, Stein Andreas; Birkner, Matthias; Depperschmidt, Andrej et al. (2024). Quenched local limit theorem for a directed random walk on the backbone of a supercritical oriented percolation cluster for d≥1. (ekstern lenke)
- Bethuelsen, Stein Andreas; Birkner, Matthias; Depperschmidt, Andrej et al. (2023). Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster. (ekstern lenke)
- Bethuelsen, Stein Andreas; Hirsch, Christian; Mönch, Christian (2021). Quenched invariance principle for random walks on dynamically averaging random conductances. (ekstern lenke)
- Bethuelsen, Stein Andreas; Valesin, Daniel; Baptista da Silva, Gabriel (2021). Graph constructions for the contact process with a prescribed critical rate . (ekstern lenke)
- Bethuelsen, Stein Andreas (2020). On projections of the supercritical contact process: uniform mixing and cutoff phenomenon.. (ekstern lenke)
- Bethuelsen, Stein Andreas (2018). The contact process as seen from a random walk . (ekstern lenke)
- Bethuelsen, Stein Andreas; Heydenreich, Markus (2016). Law of large numbers for random walks on attractive spin-flip dynamics. (ekstern lenke)
Vitenskapelig foredrag
- Bethuelsen, Stein Andreas (2024). The zombie-infection model. (ekstern lenke)
- Bethuelsen, Stein Andreas (2023). Random walk on random walks in high dimensions: non-perturbative results. (ekstern lenke)
- Bethuelsen, Stein Andreas (2021). Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster. (ekstern lenke)
- Bethuelsen, Stein Andreas (2021). Random walks in dynamic random environment. (ekstern lenke)
- Bethuelsen, Stein Andreas (2020). One-sided and Two-sided Stochastic Descriptions of the Schonmann Projection. (ekstern lenke)
- Bethuelsen, Stein Andreas (2020). On spatial vs temporal descriptions of stochastic processes. (ekstern lenke)
- Bethuelsen, Stein Andreas (2020). Invariance principle for random walks on dynamically averaging random conductances. (ekstern lenke)
- Bethuelsen, Stein Andreas (2019). On projections of the supercritical contact process: uniform mixing and cutoff phenomenon. (ekstern lenke)
- Bethuelsen, Stein Andreas (2019). On spatial vs temporal descriptions of stochastic processes. (ekstern lenke)
- Bethuelsen, Stein Andreas (2019). Loss of memory and the cutoff phenomenon for the contact process. (ekstern lenke)
- Bethuelsen, Stein Andreas (2019). On current and future research projects. (ekstern lenke)
- Bethuelsen, Stein Andreas (2019). Loss of memory for the contact process. (ekstern lenke)
Faglig foredrag
Vitenskapelig oversiktsartikkel/review
Populærvitenskapelig foredrag
Se en full oversikt over publikasjoner i Cristin
Alle mine artikler er tilgjengelige via arXiv:
- Limit laws for random walks in a dynamic path-cone mixing random environment (with Florian Völlering). (ArXiv preprint)
- Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster (with Matthias Birkner, Andrej Depperschmidt and Timo Schlüter) Electronic Journal of Probability, 28, 1-54 (2023) - ArXiv preprint.
- Quenched invariance principle for random walks on dynamically averaging random conductances (with Christian Hirchand Christian Mönch) Electronic Communications in Probability (2021) - ArXiv preprint.
- Graph constructions for the contact process with a prescribed critical rate (with Gabriel Baptista da Silva and Daniel Valesin) Journal of Theoretical Probability (2021) - ArXiv preprint.
- On projections of the supercritical contact process: uniform mixing and cutoff phenomenon. Lecture notes series Genealogies of Interacting Particle Systems, Institute for Mathematical Sciences, National University of Singapore: Volume 38, 315--340, 2020. (ArXiv preprint)
- One-sided continuity properties for the Schonmann projection (with Diana Conache) Journal of Statistical Physics, 172(4), 1147--1163, 2018. (ArXiv preprint)
- The contact process as seen from a random walk ALEA, Lat. Am. J. Probab. Math. Stat. 15, 571–585, 2018.
- Stochastic domination in space-time for the contact process (with Rob van den Berg). Random Structures Algorithms, 53(2), 221–237, 2018. (ArXiv preprint)
- Law of large numbers for random walks on attractive spin-flip dynamics (with Markus Heydenreich) Stochastic Processes and Applications 127(7), 2346-2372, 2017. (ArXiv preprint)
- Absolute continuity and weak uniform mixing for random walk in dynamic random environment (with Florian Völlering). Electron. J. Probab. 21, no. 71, 1-32, 2016.